47 research outputs found

    Upper Bounding in Inner Regions for Global Optimization under Inequality Constraints

    Get PDF
    International audienceIn deterministic continuous constrained global optimization, upper bounding the objective function generally resorts to local minimization at several nodes/iterations of the branch and bound. We propose in this paper an alternative approach when the constraints are inequalities and the feasible space has a non-null volume. First, we extract an inner region , i.e., an entirely feasible convex polyhedron or box in which all points satisfy the constraints. Second, we select a point inside the extracted inner region and update the upper bound with its cost. We describe in this paper two original inner region extraction algorithms implemented in our interval B&B called IbexOpt. They apply to nonconvex constraints involving mathematical operators like +,x,power,sqrt,exp,log,sin. This upper bounding shows very good performance obtained on medium-sized systems proposed in the COCONUT suite

    Positive Semidefiniteness and Positive Definiteness of a Linear Parametric Interval Matrix

    Full text link
    We consider a symmetric matrix, the entries of which depend linearly on some parameters. The domains of the parameters are compact real intervals. We investigate the problem of checking whether for each (or some) setting of the parameters, the matrix is positive definite (or positive semidefinite). We state a characterization in the form of equivalent conditions, and also propose some computationally cheap sufficient\,/\,necessary conditions. Our results extend the classical results on positive (semi-)definiteness of interval matrices. They may be useful for checking convexity or non-convexity in global optimization methods based on branch and bound framework and using interval techniques

    Verified global optimization for estimating the parameters of nonlinear models

    No full text
    Nonlinear parameter estimation is usually achieved via the minimization of some possibly non-convex cost function. Interval analysis allows one to derive algorithms for the guaranteed characterization of the set of all global minimizers of such a cost function when an explicit expression for the output of the model is available or when this output is obtained via the numerical solution of a set of ordinary differential equations. However, cost functions involved in parameter estimation are usually challenging for interval techniques, if only because of multi-occurrences of the parameters in the formal expression of the cost. This paper addresses parameter estimation via the verified global optimization of quadratic cost functions. It introduces tools for the minimization of generic cost functions. When an explicit expression of the output of the parametric model is available, significant improvements may be obtained by a new box exclusion test and by careful manipulations of the quadratic cost function. When the model is described by ODEs, some of the techniques available in the previous case may still be employed, provided that sensitivity functions of the model output with respect to the parameters are available

    The MPFI Library: Towards IEEE 1788-2015 Compliance

    Get PDF
    International audienceThe IEEE 1788-2015 has standardized interval arithmetic. However, few libraries for interval arithmetic are compliant with this standard. The main features of the IEEE 1788-2015 standard are detailed, namely the structure into 4 levels, the possibility to accomodate a new mathematical theory of interval arithmetic through the notion of flavor, and the mechanism of decoration for handling exceptions. These features were not present in the libraries developed prior to the elaboration of the standard. MPFI is such a library: it is a C library, based on MPFR, for arbitrary precision interval arithmetic. MPFI is not (yet) compliant with the IEEE 1788-2015 standard for interval arithmetic: the planned modifications are presented. Some considerations about performance and HPC on interval computations based on this standard, or on MPFI, conclude the paper

    Test Results for an Interval Branch and Bound Algorithm for Equality-Constrained Optimization

    No full text
    . Various techniques have been proposed for incorporating constraints in interval branch and bound algorithms for global optimization. However, few reports of practical experience with these techniques have appeared to date. Such experimental results appear here. The underlying implementation includes use of an approximate optimizer combined with a careful tesselation process and rigorous verification of feasibility. The experiments include comparison of methods of handling bound constraints and comparison of two methods for normalizing Lagrange multipliers. Selected test problems from the Floudas / Pardalos monograph are used, as well as selected unconstrained test problems appearing in reports of interval branch and bound methods for unconstrained global optimization. Keywords: constrained global optimization, verified computations, interval computations, bound constraints, experimental results 1. Introduction We consider the constrained global optimization problem minimize OE(X) s..
    corecore